Joint harmonic functions and their supervised connections
نویسندگان
چکیده
The cluster assumption had a significant impact on the reasoning behind methods of semi-supervised classification in graph-based learning. The literature includes numerous applications where harmonic functions provided estimates that conformed to data satisfying this well-known assumption, but the relationship between this assumption and harmonic functions is not as well-understood theoretically. We investigate these matters from the perspective of supervised kernel classification and provide concrete answers to two fundamental questions. (i) Under what conditions do semi-supervised harmonic approaches satisfy this assumption? (ii) If such an assumption is satisfied then why precisely would an observation sacrifice its own supervised estimate in favor of the cluster? First, a harmonic function is guaranteed to assign labels to data in harmony with the cluster assumption if a specific condition on the boundary of the harmonic function is satisfied. Second, it is shown that any harmonic function estimate within the interior is a probability weighted average of supervised estimates, where the weight is focused on supervised kernel estimates near labeled cases. We demonstrate that the uniqueness criterion for harmonic estimators is sensitive when the graph is sparse or the size of the boundary is relatively small. This sets the stage for a third contribution, a new regularized joint harmonic function for semi-supervised learning based on a joint optimization criterion. Mathematical properties of this estimator, such as its uniqueness even when the graph is sparse or the size of the boundary is relatively small, are proven. A main selling point is its ability to operate in circumstances where the cluster assumption may not be fully satisfied on real data by compromising between the purely harmonic and purely supervised estimators. The competitive stature of the new regularized joint harmonic approach is established.
منابع مشابه
Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions
An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning problem is then formulated in terms of a Gaussian random field on this graph, where the mean of the field is characterized in terms of harmonic fun...
متن کاملAnalysis of Semi-Supervised Learning with the Yarowsky Algorithm
The Yarowsky algorithm is a rule-based semisupervised learning algorithm that has been successfully applied to some problems in computational linguistics. The algorithm was not mathematically well understood until (Abney 2004) which analyzed some specific variants of the algorithm, and also proposed some new algorithms for bootstrapping. In this paper, we extend Abney’s work and show that some ...
متن کاملInequalities Associating Hypergeometric Functions with Planer Harmonic Mappings
Though connections between a well established theory of analytic univalent functions and hypergeometric functions have been investigated by several researchers, yet analogous connections between planer harmonic mappings and hypergeometric functions have not been explored. The purpose of this paper is to uncover some of the inequalities associating hypergeometric functions with planer harmonic m...
متن کاملAn Application of Hypergeometric Functions on Harmonic Univalent Functions (dedicated in Occasion of the 70-years of Professor
The purpose of the present paper is to establish connections between various subclasses of harmonic functions by applying certain convolution operator involving hypergeometric functions. To be more precise, we investigate such connections with Goodman-Rønning-type harmonic univalent functions in the open unit disc U .
متن کاملEvaluation of Nonlinear Dynamic Response of Rigid and Semi-Rigid Steel Frames under Far-Field Earthquake Records
The purpose of this research was to evaluate the nonlinear dynamic response of rigid and semi-rigid steel frames under Far-Fault Earthquake Records. Accordingly, the fragility curve of the moment frames with rigid and semi-rigid connections was determined. Considering the analytical knowledge of structures in the past, the analysis and design of steel frames based on the assumptions of rigid or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2013